

Hall effect Current Sensor **SEH3D Series**

Product description

Features:

- Based on the Hall effect measurement principle, open loop circuit method.
- The isolation voltage between primary and secondary is greater than 3000VAC.
- Easy to install, small in size and not occupying space.
- Designed according to UL94-V0 flame retardant rating.
- Adapt the programmable single-chip Hall IC

Performance:

- It can measure DC, AC, pulse, and various irregular waveform currents of cable conductors under isolation conditions.
- +5V operating voltage, fast response speed, zero drift, low temperature drift, high accuracy, good linearity.
- The dynamic performance (DI/DT and response time) is the best when the busbar is completely filled with the primary perforation.
- Strong ability to resist external electromagnetic interference (ESD, EFT, CS, CE, BCI, dv/dt, etc.).

Application:

It can be widely used in photovoltaic inverters, electric vehicle drives, battery management and other products.

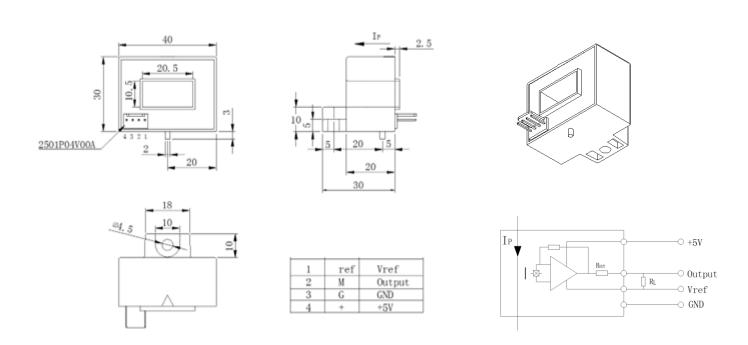
Implementation standards:

- GB/T 7665-2005
- JB/T 7490-2007
- JB/T 25480-2010
- JB/T 9473-2020
- SJ 20792-2000

Certifications

Technical Parameters

Model	SEH3D								
Parameters (25℃)	50A	100A	200A	300A	400A	500A	600A		
Primary Current (A)I _{PN}	50A	100A	200A	300A	400A	500A	600A		
Primary Current Max. Peak Value (A) I _{PM}	±150A	±300A	±600A	±900A	±900A	±900A	±900A		
Output voltage (V) V _{out} @±I _{PN} , R _L =10KΩ	2.5V±0.625V								


Electrical Data

Item	Min.	Typical	Max.	Unit
Input power supply voltage range Vc (Remark 1, 2)	+4.5	+5	+5.5	V_{DC}
Current consumption Ic	-	+13	+15	mA
Output voltage Vout $@I_{PN}$, $R_L=10K\Omega$, $T_A=25^{\circ}C$	$V_{OUT} = \frac{V_0}{2}$	V		
Reference Voltage Vref		V		
Output internal resistance R _{OUT}	-	1	-	Ω
Load Resistance R _L (Remark 3)	10	-	-	ΚΩ
Accuracy X @I _{PN} ,T _A = 25°C	-	±1	-	%
Linearity ϵ_L @ R_L =10 $K\Omega$, T_A = 25° C	-	±0.5	-	%I _{PN}
Offset voltage V _{OE} @T _A = 25°C	-	±10	±20	mV
Hysteresis voltage V _{OM} @ I _{PN} →0	-	±10	±20	mV
Temperature Coefficient of Offset Voltage TCV _{OE}	-	±0.5	±1	mV/°C
Output voltage temperature coefficient TCV _{out}	-	±0.08	±0.15	%/°C
Response time t _D @ 0→I _{PN}	-	3	5	us
Ambient operating temperature T _A	-40	25	105	°C
Ambient storage temperature T _s	-40	25	105	°C
Insulation withstand voltage VD@50Hz,60s		3000		V _{AC}
Unit Weight		55		g

Remarks:

- 1. If VC is less than the minimum value, the measurement will be inaccurate. If VC is greater than the maximum value, it may cause permanent failure of the measuring device.
- **2.** The zero bias voltage and output voltage are linearly related to Vc, so the accuracy of Vc should be ensured as much as possible when applying.

Dimension (in mm) & Wiring ref.:

Notes:

1. Size error: ±1mm;

2. Primary aperture: 20.5*10.5mm;

3. Fastening hole: φ4.5mm;

4. The output terminal is compatible with Molex 5045-04A;

5. The IP indication direction is the positive direction of the current;

6. The temperature of the primary conductor shall not exceed 105°C;

7. Incorrect wiring may cause damage to the sensor.